In Vitro Callus Induction Regeneration And

Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants

Introduction to Plant Tissue Culture

Callus Induction and Plant Regeneration of Sugar Beets Using in Vitro Methods and Cytological Studies

Plant Tissue Culture

Efficient in vitro callus induction protocol for three endemic medicinal plants (Cyclea peltata, Naegamia alata and Kaempferia galangal Linn.) in Kerala

Nineteenth International Seaweed Symposium

Modern Applications of Plant Biotechnology in Pharmaceutical Sciences

Plant Tissue Culture: Theory and Practice

Callus Induction, Plant Regeneration and in Vitro Selection for Drought Tolerant Cell Lines in Sunflower

Molecular improvement of cereal crops

Callus Induction and Plant Regeneration from Internode Tissues of Dendrocalamus Latiflorus Cv Machiku

High-Tech and Micropropagation

VStevia

Micropropagation of Orchids

In Vitro Regeneration of Bitter Gourd from Seedling Explants

Ginger

Plant Roots

Protocols for Micropropagation of Woody Trees and Fruits

Plant Cell Culture Protocols

Arabidopsis Protocols

Medicinal and Aromatic Plants

XPlant Tissue Culture

Rice Crop

The RNA World

Cumin (Cuminum Cyminum)

Mechanisms of Regeneration

Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants

Doubled Haplold Production in Crop Plants

Genetic Manipulation in Plant Breeding

Saffron

Plant Biotechnology

2002 and Beyond

Plant Cell Biotechnology

PLANT TISSUE CULTURE AS A SOURCE OF BIOCHEMICALS

Plant Propagation by Tissue Culture: In practice

Studies on In Vitro Culture for Callus Induction and Plant Regeneration in Petunia (Petunia Hybrid Vilm)

Establishment of Callus Induction and Organ Regeneration Using Eggplant (solanum Melongena L.) Seedlings Via in Vitro System

Organogenesis

Cell Genetics in Higher Plants

Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants

Introduction and techniques; Introductory history; Laboratory organisation; Media; Aseptic manipulation; Basic aspects; Cell culture; Cellular totipotency; Somatic embryogenesis; Applications to plant breeding; Haploid production; Triploid production; In vitro polination and fertilization; Zygotic embryo culture; Somatic hybridisation and cybridisation; Genetic transformation; Somaclonal and gametoclonal variant selection; Application to
horticulture and forestry; Production of disease-free plants; clonal propagation; General applications; Industrial applications: secondary metabolite production; Germplasm conservation.

Transplant Production in the 21st Century Given the vital and far-reaching applications of medicinal plant metabolites worldwide, the quality and consistency of the products as well as the very survival of various species are of the utmost importance. In Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, expert researchers provide detailed, step-by-step protocols for the establishment of in vitro cultures of key medicinal plants, their mass multiplication in a controlled environment, and step-wise secondary metabolite analysis, genetic transformation, large-scale metabolite production in a bioreactor, and molecular markers. In addition, many of these protocols will provide a basis for much needed efforts of in vitro germplasm conservation or cryopreservation of medicinal plant species at the brink of extinction as well as efforts to protect them from the adverse impact of rapid climatic changes. As a volume in the Methods in Molecular BiologyTM series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants is an ideal resource for scientists endeavoring to continue the research on this exciting natural branch of medicine.

Introduction to Plant Tissue Culture This greatly expanded and updated edition of a classic reference work comprises two volumes offering a compendium of methods for multiplying orchids through micropropagation. A detailed collection of procedures and methods for multiplying orchids, including organ, tissue, and cell culture techniques in vitro Presents classic techniques that have been in the forefront of orchid propagation since they were first developed in 1949 Detailed procedures are appended with tables and complete recipes for a large number of culture media Includes many illustrations, chemical formulas, historical vignettes, and seldom seen illustrations of people, orchids, apparatus and tools “an excellent resource like its predecessor, both informative and captivating, and served as a reminder of why we go to such extremes in our quest to propagate these plants.” American Orchid Society, 2009 “in the sense of its universal value and importance, this Second Edition will undoubtedly be considered a classic, if only because it will serve as a sole and invaluable resource on the subject.” Plant Science Bulletin, 2009
Callus Induction and Plant Regeneration of Sugar Beets Using in Vitro Methods and Cytological Studies The 10th IAPTC&B Congress, Plant Biotechnology 2002 and Beyond, was held June 23-28, 2002, at Disney's Coronado Springs Resort, in Orlando, Florida, USA. It was attended by 1,176 scientists from 54 countries. The best and brightest stars of international plant biotechnology headlined the scientific program. It included the opening address by the President of the IAPTC&B, 14 plenary lectures, and 111 keynote lectures and contributed papers presented in 17 symposia covering all aspects of plant biotechnology. More than 500 posters supplemented the formal program. The distinguished speakers described, discussed and debated not only the best of science that has been done or is being done, but also how the power of plant biotechnology can be harnessed to meet future challenges and needs. The program was focused on what is new and what is exciting, what is state of the art, and what is on the cutting edge of science and technology. In keeping with the international mandate of the IAPTC&B, 73 of the 125 speakers were from outside the United States, representing 27 countries from every region of the world. The 10th IAPTC&B Congress was a truly world-class event. The IAPTC&B, founded in 1963 at the first international conference of plant tissue culture organized by Philip White in the United States, currently has over 1,500 members in 85 countries. It is the largest, oldest, and the most comprehensive international professional organization in the field of plant biotechnology. The IAPTC&B has served the plant biotechnology community well through its many active national chapters throughout the World, by maintaining and disseminating a membership list and a website, by the publication of an official journal (formerly the Newsletter), and by organizing quadrennial international congresses in France (1970), the United Kingdom (1974), Canada (1978), Japan (1982), the United States (1963, 1986, 2002), The Netherlands (1990), Italy (1994), and Israel (1998). In addition, the IAPTC&B has a long tradition of publishing the proceedings of its congresses. Individually, these volumes have provided authoritative quadrennial reports of the status of international plant biotechnology. Collectively, they document the history of plant biotechnology during the 20th century. They are indeed a valuable resource. We are pleased to continue this tradition by publishing this proceedings volume of the 10th IAPTC&B Congress. Regrettably, we are not able to publish seven of the lectures in full (only their abstracts are included). The American and Canadian chapters of the IAPTC&B, the Plant Section of the Society for In Vitro Biology, and the University of Florida hosted the 10th IAPTC&B Congress. The Congress was a true partnership between academia and industry, and was generously supported by both groups (see list of donors/sponsors on back cover). A number of prominent international biotechnology companies and publishers participated in the very successful Science
and Technology Exhibit (see accompanying list of exhibitors) The IAPTC&B awarded 84 fellowships to young scientists from 31 countries (see accompanying list of fellowship recipients) to support their participation in the Congress.

Plant Tissue Culture This volume, fifth in the series High-Tech and Micropropagation, contains 24 chapters arranged in the following three sections: I. Vegetables and Fruits: garlic, Amaranthus, Brassica oleracea, pepper, watermelon, cassava, banana, Myrtus communis, passionfruit, Polymnia sonchifolia, pepino, and spinach. II. Grasses: bamboos, Caustis dioica, Dendrocalamus, Miscanthus x giganteus, sugarcane. III. Trees: Aegle marmelos, Eucalyptus, Fraxinus excelsior, Juglans cinerea, Pinus virginiana, Prosopis, and Ulmus. This book is of use to research workers, advanced students, and teachers in the fields of horticulture, forestry, botany, and plant biotechnology in general, and also to individuals interested in industrial micropropagation.

Plant Cell Culture Modern Applications of Plant Biotechnology in Pharmaceutical Sciences explores advanced techniques in plant biotechnology, their applications to pharmaceutical sciences, and how these methods can lead to more effective, safe, and affordable drugs. The book covers modern approaches in a practical, step-by-step manner, and includes illustrations, examples, and case studies to enhance understanding. Key topics include plant-made pharmaceuticals, classical and non-classical techniques for secondary metabolite production in plant cell culture and their relevance to pharmaceutical science, edible vaccines, novel delivery systems for plant-based products, international industry regulatory guidelines, and more. Readers will find the book to be a comprehensive and valuable resource for the study of modern plant biotechnology approaches and their pharmaceutical applications. Builds upon the basic concepts of cell and plant tissue culture and recombinant DNA technology to better illustrate the modern and potential applications of plant biotechnology to the pharmaceutical sciences Provides detailed yet practical coverage of complex techniques, such as micropropogation, gene transfer, and biosynthesis Examines critical issues of international importance and offers real-life examples and potential solutions

Efficient in vitro callus induction protocol for three endemic medicinal plants (Cyclea peltata, Naegamia alata and Kaempferia galangal Linn.) in Kerala
Nineteenth International Seaweed Symposium

The in vitro requirements for establishment of callus cultures from internodal tissues of Dendrocalamus latiflorus cv Machiku and subsequent plant regeneration were investigated. Callus was induced on Murashige and Skoog's nutrient medium supplemented with 0.1 to 25 ppm, 2,4-dichlorophenoxyacetic acid (2,4-D). Two types of callus were observed the loose and compact types. The compact type callus was produced on media supplemented with 1 ppm 2,4-D. Benzyl adenine (BA) inhibited callus induction, particularly the compact type. The formation of shoot-like structures and plantlets was observed in compact calli subcultured on media supplemented with 1 ppm BA and 2,4-D. [Authors' abstract].

Modern Applications of Plant Biotechnology in Pharmaceutical Sciences

Plant Tissue Culture: Theory and Practice

Callus Induction, Plant Regeneration and in Vitro Selection for Drought Tolerant Cell Lines in Sunflower

The production of doubled haploids has become a necessary tool in advanced plant breeding institutes and commercial companies for breeding many crop species. However, the development of new, more efficient and cheaper large scale production protocols has meant that doubled haploids are also recently being applied in less advanced breeding programmes. This Manual was prepared to stimulate the wider use of this technology for speeding and opening up new breeding possibilities for many crops including some woody tree species. Since the construction of genetic maps using molecular markers requires the development of segregating doubled haploid populations in numerous crop species, we hope that this Manual will also help molecular biologists in establishing such mapping populations. For many years, both the Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) have supported and coordinated research that focuses on development of more efficient doubled haploid production methods and their applications in breeding of new varieties and basic research through their Plant Breeding and Genetics Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The first FAO/IAEA scientific network (Coordinated Research Programme - CRP) dealing with doubled haploids was initiated by the Plant Breeding and Genetics Section in 1986.
Molecular improvement of cereal crops From the pre-historic era to modern times, cereal grains have been the most important source of human nutrition, and have helped sustain the increasing population and the development of human civilization. In order to meet the food needs of the 21st century, food production must be doubled by the year 2025, and nearly tripled by 2050. Such enormous increases in food productivity cannot be brought about by relying entirely on conventional breeding methods, especially on less land per capita, with poor quality and quantity of water, and under rapidly deteriorating environmental conditions. Complementing and supplementing the breeding of major food crops, such as the cereals, which together account for 66% of the world food supply, with molecular breeding and genetic manipulation may well provide a grace period of about 50 years in which to control population growth and achieve sustainable development. In this volume, leading world experts on cereal biotechnology describe the production and commercialization of the first generation of transgenic cereals designed to substantially reduce or prevent the enormous losses to cereal productivity caused by competition with weeds, and by various pests and pathogens, which is an important first step in that direction.

Callus Induction and Plant Regeneration from Internode Tissues of Dendrocalamus Latiflorus Cv Machiku

High-Tech and Micropropagation V In the past there were many attempts to change natural foodstuffs into high-value products. Cheese, bread, wine, and beer were produced, traditionally using microorganisms as biological tools. Later, people influenced the natural process of evolution by artificial selection. In the 19th century, observations regarding the dependence of growth and reproduction on the nutrient supply led to the establishment of agricultural chemistry. Simultaneously, efforts were directed at defining the correlation between special forms of morphological differentiation and related biochemical processes. New experimental systems were developed after the discovery of phytohormones and their possible use as regulators of growth and differentiation. In these systems, intact plants or only parts of them are cultivated under axenic conditions. These methods, called "in vitro techniques", were introduced to modern plant breeding. In the field of basic research, plant cell cultures were increasingly developed and the correlations between biochemical processes and visible cell variations were explored further. It should be possible to manipulate the basic laws of regulation and the respective biochemical processes should be regarded as being independent of morphological processes of plant development.
Stevia Like the previous nine volumes published between 1988 and 1996, Medicinal and Aromatic Plants X is unique in its approach. It comprises 22 chapters dealing with the distribution, importance, conventional propagation, micropropagation, tissue culture studies, and the in vitro production of important medicinal and pharmaceutical compounds in various species of Actinidia, Alkanna, Arnebia, Campanula, Catharanthus, Centella, Chenopodium, Cornus, Cyanara, Ephedra, Euglena, Haplophyllum, Morus, Oenothera, Otacanthus, Oxalis, Polypodium, Rosmarinus, Sesamum, Solanum, Taxus, and Tephrosia. This book is tailored to the needs of advanced students, teachers, and research scientists in the field of pharmacy, plant tissue culture, phytochemistry, biochemical engineering, and plant biotechnology in general.

Micropropagation of Orchids History of plant cell culture; Media components and preparation; Contamination; Callus induction; Regeneration and morphogenesis; Woody shrubs and trees; Haploid plants from anther culture; Embryo rescue; Meristem culture for virus-free plants; In vitro propagation for commercial production of ornamentals; Agrobacterium-mediated transformation of plants.

In Vitro Regeneration of Bitter Gourd from Seedling Explants Ginger: The Genus Zingiber is the first comprehensive volume on ginger. Valued as a spice and medicinal plant from ancient times both in India and China, ginger is now used universally as a versatile spice and in traditional medicine as well as in modern medicine. This book covers all aspects of ginger, including botany, crop improvement, chemistry, biotechnology, production technology in the major producing countries, diseases, pests, and harvesting. It also explores processing, products, economics and marketing, pharmacology, medicinal applications, and uses as a spice and flavoring. Experts in the areas of genetic resources, botany, crop improvement, and biotechnology of ginger give an in-depth analysis of these key aspects, and each chapter concludes with an extensive bibliography.

Ginger This Methods in Molecular Biology book covers topics such as how to image the structure of plant ovules and embryos, tools for establishing cell lineages, methods for studying the totipotency of plant cells, fluorescence-activated cell sorting and more.

Plant Roots
Protocols for Micropropagation of Woody Trees and Fruits The ability to culture cells is fundamental for mass propagation and as a baseline for the genetic manipulation of plant nuclei and organelles. The introduction to Plant Cell Culture: Essential Methods provides a general background to plant cell culture, including basic principles, technologies and laboratory practices that underpin the more detailed techniques described in subsequent chapters. Whilst each chapter provides a background to the topic area and methodology, a crucial aspect is the provision of detailed protocols with emphasis on trouble shooting, describing common problems and detailed advice for their avoidance. Plant Cell Culture: Essential Methods provides the reader with a concise overview of these techniques, including micropropagation, mutagenesis, cryopreservation, genetic and plastid transformation and somatic cell technologies. This book will be an essential addition to any plant science laboratory's bookshelf. Highlights the best and most up-to-date techniques for working on plant cell culture Explains clearly and precisely how to carry out selected techniques in addition to background information on the various approaches Chapters are written by leading international authorities in the field and cover both well-known and new, tried and tested, methods for working in plant cell culture An essential laboratory manual for students and early-career researchers.

Plant Cell Culture Protocols Plant Tissue Culture Techniques and Experiments is a manual that contains laboratory exercises about the demonstration of the methods and different plant materials used in plant tissue culture. It provides an overview on the plant cell culture techniques and plant material options in selecting the explant source. This book starts by discussing the proper setup of a tissue culture laboratory and the selection of the culture medium. It then explains the determination of an explant which is the ultimate goal of the cell culture project. The explant is a piece of plant tissue that is used in tissue culture. Furthermore, the book discusses topics about callus induction, regeneration and morphogenesis process, and haploid plants from anther and pollen culture. The meristem culture for virus-free plants and in vitro propagation for commercial propagation of ornamentals are also explained in this manual. The book also provides topics and exercises on the protoplast isolation and fusion and agrobacterium-mediated transformation of plants. This manual is intended for college students, both graduate and undergraduate, who study chemistry, plant anatomy, and plant physiology.

Arabidopsis Protocols Rice is a staple crop in many coastal and non-coastal areas of the globe and requires a
Read Free In Vitro Callus Induction Regeneration And

large production area. With the increasing trends in population, it is pivotal to increase the production of this important crop for sustainability. The introduction of high-yielding rice cultivars through molecular breeding is one of the possibilities that can ensure sustainability. Additionally, development of new biotic and abiotic stress-resistant cultivars with higher nutritional value can revolutionize the rice industry.

Medicinal and Aromatic Plants X A combination of 1.0 mg/l-1 2,4-D and 1.0 mg/l-1 BAP produced the highest callus frequency in nodal (93.75%), leaf (78.75%) and roots (75.00%) segments. In case of root tips 1.0 mg/l-1 2,4-D combined with 0.5 mg/l-1 BAP produced the highest callus (72.5%). Nodal segments required minimum number of 8.25 days while root tips required the maximum 32 days for callus induction. A combination of 2.5 mg/l-1 BAP and 0.6 mg/l-1 NAA produced the highest callus frequency (86.25%) in nodal segments followed by root segments (85.00%). Among the combinations 1.0 mg/l-1 2, 4-D and 1.0 mg/l-1 BAP was the most suitable for producing greenish friable callus and 2.0 or 2.5 mg/l-1 BAP and 0.30 or 0.60 mg/l-1 NAA was suitable for callus induction. A combination of 1.0 mg/l-1 2, 4-D and 1.0 mg/l-1 BAP exhibited 75.00% and 56.0% shoot direct regeneration from nodal segments and leaf segments, respectively. Nodal segments had 70% shoot regeneration via callus on medium with 2.0 mg/l-1 BAP and 0.5 mg L-1 IBA + 0.2 mg/l-1 GA3. Leaf segments and root tips had equal percentage (65.0) of shoot regeneration upon culture on medium with 2.0 mg/l-1 BAP and 0.2 mg/l-1 IAA.

Plant Tissue Culture This new volume of Current Topics in Developmental Biology covers the area of mechanisms in regeneration. With an international board of authors, it provides a comprehensive set of reviews covering such topics as control of growth during regeneration, skeletal muscle degeneration and regeneration in mammals and flies, and suppression of regeneration in mammals. Covers the area of mechanisms in regeneration International board of authors Provides a comprehensive set of reviews

Rice Crop In Plant Cell Culture Protocols, Robert Hall and a panel of expert researchers present a comprehensive collection of the most frequently used and broadly applicable techniques for plant cell and tissue culture. Readily reproducible and extensively annotated, the methods cover culture initiation, maintenance, manipulation, application, and long-term storage, with emphasis on techniques for genetic modification and micropropagation. Many of these protocols are currently used in major projects designed to
produce improved varieties of important crop plants. In addition, a number of specialized protocols have been included to illustrate the diversity of the techniques available and their widespread applicability. Plant Cell Culture Protocols is aimed at scientists involved in all aspects of plant biotechnological research, as well as those working in other areas of agriculture and horticulture who are interested in expanding their technical repertoire to include in vitro methodology. Its state-of-the-art techniques are certain to make the book today's reference of choice, an indispensable tool in the development of new transgenic plants and full-scale commercial applications.

The RNA World Providing a comprehensive and contemporary overview of the status of this particular genus, this book will be of interest to all those concerned with the study and uses of spices, medicinal and aromatic plants.

Cumin (Cuminum Cyminum) This comprehensive collection of current and essential protocols contains many easily reproducible methods developed for use with Arabidopsis - a system for approaching fundamental questions in plant biology. The methods range from the basics of growing these plants to sophisticated gene cloning strategies and can, in many cases, also be applied to other plant species with minor modifications. Sections on genetics, transformation and gene expression analysis that are especially helpful to scientists involved in mutant analysis or producing and analyzing transgenic plants.

Mechanisms of Regeneration

Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants

Doubled Haploid Production in Crop Plants We are facing global issues concerning environmental pollution and shortages of food, feed, phytomass (plant biomass) and natural resources, which will become more serious in the forthcoming decades. To solve these issues, immeasurable numbers of various plants and huge amounts of phytomass are required every year for food, feed and for the improvement of amenities, the environment and our quality of life. Increased phytomass is also required as alternative raw material for producing bio-energy, biodegradable plastics and many other plant-originated industrial products. Only by using phytomass as a
reproducible energy source and raw material, instead of fossil fuels and atomic power, we can save natural resources and minimize environmental pollution. To increase phytomass globally, we need billions of quality transplants (small plants) to be grown yearly, in the field or in the greenhouse, under various environmental conditions. However, these high quality transplants can be produced only under carefully controlled, rather than variable environmental conditions. Recent research has shown that the closed transplant production system requires considerably small amounts of electricity, water, fertilizer, CO₂ and pesticide to produce value-added transplants as scheduled with minimum release of environmental pollutants and minimum loss of transplants. The closed or closed-type transplant production system is defined as a transplant production system covered with opaque walls with minimized or controlled ventilation rates, using artificial lighting. With this system, photoperiod, light intensity and quality, air temperature, humidity, CO₂ concentration and air current speed can be controlled as desired.

Genetic Manipulation in Plant Breeding Since the publication of the first edition in 1983, several new and exciting developments have taken place in the field of plant tissue culture, which forms a major component of what is now called plant biotechnology. The revised edition presents updated information on theoretical, practical and applied aspects of plant tissue culture. Each chapter has been thoroughly revised and, as before, is written in lucid language, includes relevant media protocols, and is profusely illustrated with self-explanatory diagrams and original photographs. This book includes three new chapters: "Variant selection", "Genetic Engineering" and "Production of Industrial Compounds" and contains a complete bibliography and a glossary of terms commonly used in tissue culture literature. This updated version proves to be an excellent text for undergraduate, postgraduate students and teachers in various fields of plant sciences and a useful reference book for those interested in the application of any aspect of this aseptic technology.

Saffron A simple and reproducible protocol for in vitro callus induction from explants of three endemic plants (Cyclea peltata, Naregamia alata and Kaempferia galanga Linn.) have been developed. Explants collected from the field grown plants were cultured on MS medium supplemented with different concentration/combination(s) of phytohormones. During the study period we evaluated the effect of different growth regulators in callus induction and its morphological analysis of the targeted plants. To optimize the callus induction of three different targeted explants were cultured on different concentration phytohormones. Among which the system
include 2,4-D has the most efficient effect on the three experimental plants, Five different concentration taken for three explants, among that Cyclea peltata and Kaempferia galangal Linn. has the highest potential to induce callusing at 2 mg/L of 2,4-D. In this study we found that there was no effect on callusing of the targeted plants was MS medium containing combination of auxin and cytokinin for callusing.

Plant Biotechnology 2002 and Beyond This book documents local and international literature on cumin. These findings have been analyzed comprehensively and compared with results of international origin. This book contains ten chapters covering topics such as history, importance, acreage, production and utilization of cumin. It further discusses botany and plant characteristics, ecophysiological criteria of cumin, production technology, water requirement, pest and diseases of cumin and the genetic and breeding aspects. Economic aspects of cumin, processing, chemical composition and standards, are the main areas to this important crop which are further described in this book. The book also touches upon important research strategies which help develop this crop.

Plant Cell Biotechnology Micropropagation has become a reliable and routine approach for large-scale rapid plant multiplication, which is based on plant cell, tissue and organ culture on well defined tissue culture media under aseptic conditions. A lot of research efforts are being made to develop and refine micropropagation methods and culture media for large-scale plant multiplication of several number of plant species. However, many forest and fruit tree species still remain recalcitrant to in vitro culture and require highly specific culture conditions for plant growth and development. The recent challenges on plant cell cycle regulation and the presented potential molecular mechanisms of recalcitrance are providing excellent background for understanding on totipotency and what is more development of micropropagation protocols. For large-scale in vitro plant production the important attributes are the quality, cost effectiveness, maintenance of genetic fidelity, and long-term storage. The need for appropriate in vitro plant regeneration methods for woody plants, including both forest and fruit trees, is still overwhelming in order to overcome problems facing micropropagation such as somaclonal variation, recalcitrant rooting, hyperhydricity, polyphenols, loss of material during hardening and quality of plant material. Moreover, micropropagation may be utilized, in basic research, in production of virus-free planting material, cryopreservation of endangered and elite woody species, applications in tree breeding and reforestation.
PLANT TISSUE CULTURE AS A SOURCE OF BIOCHEMICALS

Plant Propagation by Tissue Culture: In practice World population is increasing at an alarming rate and this has resulted in increasing tremendously the demand for tree products such as wood for construction materials, fuel and paper, fruits, oils and medicines etc. This has put immense pressure on the world’s supplies of trees and raw material to industry and will continue to do so as long as human population continues to grow. Also, the quality of human diet, especially nutritional components, is adversely affected due to limited genetic improvement of most of fruit trees. Thus there is an immediate need to increase productivity of trees. Improvement has been made through conventional breeding methods, however, conventional breeding is very slow due to long life cycle of trees. A basic strategy in tree improvement is to capture genetic gain through clonal propagation. Clonal propagation via organogenesis is being used for the production of selected elite individual trees. However, the methods are labour intensive, costly, and produce low volumes. Genetic gain can now be captured through somatic embryogenesis. Formation of embryos from somatic cells by a process resembling zygotic embryogenesis is one of the most important features of plants. In 1958, Reinert in Germany and Steward in USA independently reported somatic embryogenesis in carrot cultures. Since then, tremendous progress in somatic embryogenesis of woody and non-woody plants has taken place. It offers a potentially large-scale propagation system for superior clones.


Establishment of Callus Induction and Organ Regeneration Using Eggplant (solanum Melongena L.) Seedlings Via in Vitro System Stevia rebaudiana is a remarkable South American plant that has become widely used in certain parts of the world as a natural sweetening agent and dietary supplement. Purified extracts of S. rebaudiana have been used as sweeteners and flavor enhancers in the food industry in Japan for over a quarter of a century, and have been found to be up to 300
Plant Organogenesis The Proceedings of the 19th International Seaweed Symposium provides an invaluable reference to a wide range of fields in applied phycology. Papers cover topics as diverse as the systematics, ecology, physiology, integrated multitrophic aquaculture, commercial applications, carbohydrate chemistry and applications, harvesting biology, cultivation of seaweeds and microalgae and more. Contributions from all parts of the world give the volume exceptional relevance in an increasingly global scientific and commercial climate. Like its predecessors, this volume provides a benchmark of progress in all fields of applied seaweed science and management, and will be referred to for many years to come.

Cell Genetics in Higher Plants The third edition of a standard resource, this book offers a state-of-the-art, multi-disciplinary presentation of plant roots. It examines structure and development, assemblage of root systems, metabolism and growth, stressful environments, and interactions at the rhizosphere. Reflecting the explosion of advances and emerging technologies in the field, the book presents developments in the study of root origin, composition, formation, and behavior for the production of novel pharmaceutical and medicinal compounds, agrochemicals, dyes, flavors, and pesticides. It details breakthroughs in genetics, molecular biology, growth substance physiology, biotechnology, and biomechanics.