Soviet Journal of Coordination ChemistryCoordination ChemistryCoordination ChemistryInorganic StereochemistryTheoretical Principles of Inorganic ChemistryInorganic Coordination CompoundsThe Chemistry of Coordination Complexes and Transition MetalsA Textbook of Inorganic Chemistry – Volume 1Sterechemistry of Coordination CompoundsStereochemistry and Bonding in Inorganic ChemistryStereochemistry of Coordination CompoundsCoordination ChemistryRussian Journal of Coordination ChemistryChelating Agents and Metal ChelatesComprehensive Coordination Chemistry IIElectronic Structure and Properties of Transition Metal CompoundsThe Chemistry of the Coordination CompoundsComplexes and First-Row Transition ElementsStereochepmistry - WorkbookProgress in Inorganic ChemistryDescriptive Inorganic ChemistryCoordination Chemistry in Non-Aqueous SolutionsBasic Concepts Viewed from Frontier in Inorganic Coordination ChemistryChirality in Transition Metal ChemistrySpectroscopic AnalysesClassics in Coordination Chemistry: Twentieth-century papers (1904-1935)Rules for the Nomenclature of Organic ChemistryProgress in StereochemistryStereochemistry, Lability, and Ligand Exchange Studies of Some Dihalobis (-diketonato) Titanium (IV) ComplexesAn Introduction to the Chemistry of Complex CompoundsAdvanced Inorganic ChemistryOrganometallic Chemistry Volume 43Inorganic ChemistryIrodium(III) in Optoelectronic and Photonics ApplicationsStereoselective Synthesis of Drugs and Natural ProductsThe Organometallic Chemistry of the Transition MetalsStructural Chemistry of Inorganic Actinide CompoundsComplex Formation and Stereochemistry of Coordination CompoundsIntroduction to Coordination ChemistryAt the heart of coordination chemistry lies the coordinate bond, initiates simplest sense arising from donation of a pair of electrons from a donor atom to an empty orbital on a central metalloid or metal. Metals overwhelmingly exist as their cations, but these are rarely met ‘naked’ – they are clothed in an array of other atoms, molecules or ions that involve coordinate covalent bonds (hence the name coordination compounds). These metal ion complexes are ubiquitous in nature, and are central to an array of natural and synthetic reactions. Written in a highly readable, descriptive and accessible styleIntroduction to Coordination Chemistry describes properties of coordination compounds such as colour, magnetism and reactivity as well as the logic in their assembly and nomenclature. It is illustrated with many examples of the importance of coordination chemistry in real life, and includes extensive references and a bibliography. Introduction to Coordination Chemistry is a comprehensive and insightful discussion of one of the primary fields of study in inorganic Chemistry for both undergraduate and non-specialist readers. This book is both a review of current research and an undergraduate textbook for inorganic chemistry at university level. In university undergraduate lectures, basic concepts are mainly explained and added examples of frontier research are optional. However, in many cases, frontier research is more interesting for students than basic studies. This book is aimed at undergraduates in inorganic chemistry. Each author introduces or reviews “frontier research topics” of inorganic coordination chemistry. Additionally, “basic concepts,” as found in textbooks on this subject, indicate application examples of “frontier research topics.” Considerable attention has been focussed on non-aqueous chemistry in the last decade and this situation has arisen no doubt from a realization of the vast application of this branch of chemistry. Within this field much energetic work has been channelled into the determination of the coordination chemistry of transition metals in these solvent systems. Elaborate experimental techniques have been developed to discover, in particular, the magnetic and spectral properties of complex compounds, and the theoretical background of such systems has been expanded to corroborate, as far as possible, the experimental results. This text has, however, a different bias from many books currently available on this branch of chemistry, and is designed to be a survey of known facts on many of the non-aqueous solvents currently in use mainly in the field of halogen chemistry, together with a discussion of these facts in the light of accepted
principles. As such, it is hoped to close a gap in the literature of which many workers and advanced students in this field will be aware. The treatment is meant to be selective rather than completely comprehensive and must inevitably reflect some of the special interests of the author. Chelating Agents and Metal Chelates focuses on the structure and properties of metal chelates, as well as bond types, stereochemistry, and optical phenomena. The selection first offers information on historical background and fundamental concepts and the nature of metal-ligand bond. Discussions focus on the structure and stability of metal chelates, bond types and characteristic properties, classes of acceptor metal atoms, and metal-metal bonds in complex compounds. The text also touches on bidentate chelates, design and stereochemistry of multidentate chelating agents, and optical phenomena in metal chelates. The publication ponders on oxidation-reduction potentials as functions of donor atom and ligand and metal chelates of ethylenediaminetetraacetic acid and related substances. Topics include liquid junction potentials, reversibility, measurement of redox potentials, ethylenediaminetetraacetato chelate couples, and metal chelates of ethylenediaminetetraacetic acid. The text also takes a look at metal chelates in biological systems and physical and coordination chemistry of tetrapyrrrole pigments. The manuscript is a vital reference for senior students, research workers, biologists, and medical scientists interested in the chemistry of metal chelates. With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry. This well-illustrated and well-referenced book provides a systematic introduction to the modern aspects of the topographical stereochemistry of coordination compounds, which are made up of metal ions surrounded by other non-metal atoms, ions and molecules. Molecular stereochemistry is a fundamental aspect of all areas of chemistry. It is especially important in inorganic chemistry where the coordination numbers are variable and occasionally quite high. The present book evolved naturally from a series of articles written by Professor Kepert for Progr88 in Inorganic O8me8try, elucidating aspects of the stereochemistry of inorganic compounds of coordination numbers 4-12. In the present volume, Professor Kepert has added new sections and synthesized these individual chapters into a unified treatment, updating his references when necessary to the most recent contributions in the literature, and interweaving the various themes as deemed appropriate. The result is a major contribution, describing the stereochemistry of coordination compounds having both unidentate and multidentate ligands. The viability of the repulsion approach to stereochemistry is tested to the limit in this treatise and shown to be an extremely good way of rationalizing a diverse body of data. This book covers the synthesis, reactions, and properties of elements and inorganic compounds for courses in descriptive inorganic chemistry. It is suitable for the one-semester (ACS-recommended) course or as a supplement in general chemistry courses. Ideal for major and non-majors, the book incorporates rich graphs and diagrams to enhance the content and maximize learning. Includes expanded coverage of chemical bonding and enhanced treatment of Buckminster Fullerenes Incorporates new industrial applications matched to key topics in the text Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly commissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest. This workbook in stereochemistry is designed for students, lecturers and scientists in chemistry, pharmacy, biology and medicine who deal with chiral chemical compounds and their properties. It serves as a supplement to textbooks and seminars and thus provides selected examples for students to practice the use of the conventions and terminology for the exact three-dimensional description of chemical compounds. It contains 191 problems with extended solutions. An Introduction to the
Chemistry of Complex Compounds discusses the fundamental concepts that are essential in understanding the underlying principles of complex compounds. The coverage of the book includes the compounds of the hexa, penta, and tetrammine type; compounds of the tri, dl, monoamine and hexacido types for the coordination number of 6; and complex compounds with a coordination number of 4. The text also covers the effects and chemical properties of complex compounds, such as the nature of the force of complex formation; the mutual effects of coordinated groups; and acid-base properties, oxidation-reduction properties, and solution equilibriums of complex compounds. The book will be of great use to chemists and chemical engineers. A chronicle of Jamestown, the first English colony to survive in the wilderness of the New World. Structural Chemistry of Inorganic Actinide Compounds is a collection of 13 reviews on structural and coordination chemistry of actinide compounds. Within the last decade, these compounds have attracted considerable attention because of their importance for radioactive waste management, catalysis, ion-exchange and absorption applications, etc. Synthetic and natural actinide compounds are also of great environmental concern as they form as a result of alteration of spent nuclear fuel and radioactive waste under Earth surface conditions, during burn-up of nuclear fuel in reactors, represent oxidation products of uranium miles and mine tailings, etc. The actinide compounds are also of considerable interest to material scientists due to the unique electronic properties of actinides that give rise to interesting physical properties controlled by the structural architecture of respective compounds. The book provides both general overview and review of recent developments in the field, including such emergent topics as nanomaterials and nanoparticles and their relevance to the transfer of actinides under environmental conditions. * Covers over 2,000 actinide compounds including materials, minerals and coordination polymers * Summarizes recent achievements in the field * Some chapters reveal (secret) advances made by the Soviet Union during the 'Cold war' Chirality in Transition Metal Chemistry is an essential introduction to this increasingly important field for students and researchers in inorganic chemistry. Emphasising applications and real-world examples, the book begins with an overview of chirality, with a discussion of absolute configurations and system descriptors, physical properties of enantiomers, and principles of resolution and preparation of enantiomers. The subsequent chapters deal with the specifics of chirality as it applies to transition metals. Some reviews of Chirality in Transition Metal Chemistry "useful to students taking an advanced undergraduate course and particularly to postgraduates and academics undertaking research in the areas of chiral inorganic supramolecular complexes and materials." Chemistry World, August 2009 “the book offers an extremely exciting new addition to the study of inorganic chemistry, and should be compulsory reading for students entering their final year of undergraduate studies or starting a Ph.D. in structural inorganic chemistry.” Applied Organometallic Chemistry Volume 23, Issue 5, May 2009 “In conclusion the book gives a wonderful overview of the topic. It is helpful for anyone entering the field through systematic and detailed introduction of basic information. It was time to publish a new and topical text book covering the important aspect of coordination chemistry. It builds bridges between Inorganic, organic and supramolecular chemistry. I can recommend the book to everybody who is interested in the chemistry of chiral coordination compounds.” Angew. chem. Volume 48, Issue 18, April 2009 About the Series Chirality in Transition Metal Chemistry is the latest addition to the Wiley Inorganic Chemistry Advanced Textbook series. This series reflects the pivotal role of modern inorganic and physical chemistry in a whole range of emerging areas such as materials chemistry, green chemistry and bioinorganic chemistry, as well as providing a solid grounding in established areas such as solid state chemistry, coordination chemistry, main group chemistry and physical inorganic chemistry. Coordination Chemistry is a collection of invited lectures presented at the 20th International Conference on Coordination Chemistry held in Calcutta, India, on December 10-14, 1979, and organized by the International Union of Pure and Applied Chemistry in cooperation with India's National Science Academy and the Department of Science & Technology. The conference covers a wide range of topics relating to coordination chemistry, including the stereochemistry of coordination compounds; the mechanism of the base hydrolysis of octahedral cobalt(III) complexes; and metal chelates as anticancer agents. This book consists of 26 chapters and opens with a discussion on some developments in the stereochemistry of coordination complexes, including the creation of "sepulchrate" ions of cobalt, chromium, ruthenium, and platinum; the preparation of planar
complexes containing ligands spanning trans-positions; and the separation of optical and configurational isomers of octahedral complexes containing unsymmetrical and asymmetric ligands. The following chapters explore complex chemistry and the mimicry of metalloenzymes; metal complexes with functionalized macrocyclic ligands; binuclear complexes in electron transfer reactions; and application of coordination chemistry in biology and medicine. The synthetic and structural chemistry of transition metals is also considered, along with linear free energy relationships in coordination chemistry. This monograph will be a valuable source of information for practitioners and research workers in the field of pure and applied chemistry, particularly coordination chemistry. This book has been written in a simple and lucid language to help students understand the intricate theories of coordination chemistry. Divided into two parts, the first part reviews all the recent developments in the fields of organometallics and co-ordination chemistry. The second part deals with transition and inner transition metals including the study of f-block elements. It was developed with a focus on the need to demystify coordination complexes and transition metals. Inorganic Chemistry easily surpasses its competitors in sheer volume and depth of information. Readers are presented with summaries that ease exam preparation, an extensive index, numerous references for further study, six invaluable appendixes, and over 150 tables that provide important data on elements at a quick glance. Now in its 101st printing, Inorganic Chemistry provides an authoritative and comprehensive reference for graduate students, as well as chemists and scientists in fields related to chemistry such as physics, biology, geology, pharmacy, and medicine. Translated for the first time into English, Holleman and Wiberg's book is a bestseller in Germany, where every chemist knows and values it. Prior to this translation, there was no equivalent to Holleman and Wiberg's book in English. Fully updated and expanded to reflect recent advances, this Fourth Edition of the classic text provides students and professional chemists with an excellent introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications. Providing an invaluable resource, this volume contains analysed, evaluated and distilled information on the latest in organometallic and coordination chemistry research and emerging fields. With the increase in volume, velocity and variety of information, researchers can find it difficult to keep up to date with the literature in their field. The reviews range in scope and include recent advances in chromium coordination chemistry, borohydride and borane ligand architectures supported by heterocyclic units and discussion on behaviours of novel ruthenium(II) complexes. This volume is a key reference for researchers in academic and industrial settings. This comprehensive series of volumes on inorganic chemistry provides inorganic chemists with a forum for critical, authoritative evaluations of advances in every area of the discipline. Every volume reports recent progress with a significant, up-to-date selection of papers by internationally recognized researchers, complemented by detailed discussions and complete documentation. Each volume features a complete subject index and the series includes a cumulative index as well. Advanced Inorganic Chemistry: Applications in Everyday Life connects key topics on the subject with actual experiences in nature and everyday life. Differing from other foundational texts with this emphasis on applications and examples, the text uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes. From this foundation, the text explores more advanced topics, such as: Ligands and Ligand Substitution Processes with an emphasis on Square-Planar Substitution and Octahedral Substitution Reactions in Inorganic Chemistry and Transition Metal Complexes, with a particular focus on Crystal-Field and Ligand-Field Theories, Electronic States and Spectra and Organometallic, Bioinorganic Compounds, including Carboranes and Metallacarboranes and their applications in Catalysis, Medicine and Pollution Control. Throughout the book, illustrative examples bring inorganic chemistry to life. For instance, biochemists and students will be interested in how coordination chemistry between the transition metals and the ligands has a direct correlation with cyanide or carbon monoxide poisoning (strong-field Cyanide or CO ligand versus weak-field Oxygen molecule). Engaging discussion of key concepts with examples from the real world Valuable coverage from the foundations of chemical bonds and stereochemistry to advanced topics, such as organometallic, bioinorganic, carboranes and environmental chemistry. Uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of
attractions, leading to reactivity between molecules of different shapes.

Rules for the Nomenclature of Organic Chemistry: Section E: Stereochemistry (Recommendations 1974) deals with the main principles of stereochemistry. The rules discussed in this section have two main objects, namely, to prescribe, for basic views, terms that may provide a common language in all aspects of stereochemistry; and to define the ways in which these terms may be incorporated into the names of individual compounds. This book discusses the steric structure of a compound, which is denoted by an affix or affixes to the name that does not prescribe the stereochemistry. This text explains that isomers are termed stereoisomers when they differ only in the arrangement of the atoms in space. This book explains as well that the terms relative stereochemistry and relative configuration are used to describe the positions of substituents on different atoms in a molecule relative to one another. This book is a valuable resource for organic chemists.

This book covers all important nomenclature, theories of bonding and stereochemistry of coordination complexes. The authors have made an effort to inscribe the ideas knowledge, clearly and in an interesting way to benefit the readers. The complexities of Molecular Orbital theory have been explained in a very simple and easy manner. It also deals with transition and inner transition metals. Conceptually, all transition and inner transition elements form complexes which have definite geometry and show interesting properties. General and specific methods of preparation, physical and chemical properties of each element has been discussed at length. Group wise study of elements in d-block series has been explained. Important compounds, complexes and organometallic compounds of metals in different oxidation states have been given explicitly.

Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.

Brings together the best tested and proven stereoselective synthetic methods. Both the chemical and pharmaceutical industries are increasingly dependent on stereoselective synthetic methods and strategies for the generation of new chiral drugs and natural products that offer specific 3-D structures. With the publication of Stereoselective Synthesis of Drugs and Natural Products, researchers can turn to this comprehensive two-volume work to guide them through all the core methods for the synthesis of chiral drugs and natural products. Stereoselective Synthesis of Drugs and Natural Products features contributions from an international team of synthetic chemists and pharmaceutical and natural product researchers. These authors have reviewed the tremendous body of literature in the field in order to compile a set of reliable, tested, and proven methods alongside step-by-step guidance. This practical resource not only explores synthetic methodology, but also reaction mechanisms and applications in medicinal chemistry and drug discovery. The publication begins with an introductory chapter covering general principles and methodologies, nomenclature, and strategies of stereoselective synthesis. Next, it is divided into three parts: Part One: General Methods and Strategies Part Two: Stereoselective Synthesis by Bond Formation including C-C bond formation C-H bond formation C-O bond formation C-N bond formation Other C-heteroatom formation and other bond formation Part Three: Methods of Analysis and Chiral Separation References in every chapter serve as a gateway to the literature in the field. With this publication as their guide, chemists involved in the stereoselective synthesis of drugs and natural products now have a single, expertly edited source for all the methods they need.

The book presents developments and applications of these methods, such as NMR, mass, and others, including their applications in pharmaceutical and biomedical analyses. The book is divided into two sections. The first section covers spectroscopic methods, their applications, and their significance as characterization tools; the second section is dedicated to the applications of spectrophotometric methods in pharmaceutical and biomedical analyses. This book would be useful for students, scholars, and scientists engaged in synthesis, analyses, and applications of materials/polymers.

This advanced textbook uses numerous illustrations and a systematic approach to explain modern aspects of the topographical stereochemistry of Werner type complexes. It introduces the stereochemistry of various co-ordination geometries, focusing on the octahedral case. The fundamental photophysical properties of iridium(III) materials make this class of materials the pre-eminent transition metal complex for use in optoelectronic applications. Iridium(III) in Optoelectronic and Photonics Applications represents the definitive account of photoactive iridium complexes and their use across a wide variety of applications. This two-volume set begins with an overview of the synthesis of these complexes and discusses their photophysical properties. The text highlights not only...
mononuclear complexes but also the properties of multinuclear and polymeric iridium-based materials and the assembly of iridium complexes into larger supramolecular architectures such as MOFs and soft materials. Chapters devoted to the use of these iridium-based materials in diverse optoelectronic applications follow, including: electroluminescent devices such as organic light emitting diodes (OLEDs) and light-emitting electrochemical cells (LEECs); electrochemiluminescence (ECL); bioimaging; sensing; light harvesting in the context of solar cell applications; in photoredox catalysis and as components for solar fuels. Although primarily targeting a chemistry audience, the wide applicability of these compounds transcends traditional disciplines, making this text also of use to physicists, materials scientists or biologists who have interests in these areas. An advanced-level textbook in inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry - Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory, dπ - pπ bonds, Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions, Trends in stepwise constants, Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand, Chelate effect and its thermodynamic origin, Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes, Mechanisms for ligand replacement reactions, Formation of complexes from aquo ions, Ligand displacement reactions in octahedral complexes- acid hydrolysis, Base hydrolysis, Racemization of tris chelate complexes, Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes, The trans effect, Theories of trans effect, Mechanism of electron transfer reactions – types; Outer sphere electron transfer mechanism and inner sphere electron transfer mechanism, Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, cristobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory, Molecular orbital theory, octahedral, tetrahedral or square planar complexes, π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals, Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states), Calculation of Dq, B and β parameters, Effect of distortion on the d-orbital energy levels, Structural evidence from electronic spectrum, John-Tellar effect, Spectrochemical and nephalauxetic series, Charge transfer spectra, Electronic spectra of molecular addition compounds. Chapter 9. Magentic Properties of Transition Metal Complexes: Elementary theory of magneto-chemistry, Guoy’s method for determination of magnetic susceptibility, Calculation of magnetic moments, Magnetic properties of free ions, Orbital contribution, effect of ligand-field, Application of magneto-chemistry in structure determination, Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes, Wade’s rules, Carboranes, Metal Carbonyl Clusters - Low Nuclearity Carbonyl Clusters, Total Electron Count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls, structure and bonding, Vibrational spectra of metal carbonyls for bonding and structure elucidation, Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.