Experiments In Topology | 7260fc 8229fe6aae25e19e5234b174bb

Knots are familiar objects. We use them to moor our boats, to wrap our packages, to tie our shoes. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. The Knot Book is an introduction to this rich theory, starting from our familiar understanding of knots and a bit of college algebra and finishing with exciting topics of current research. The Knot Book is also about the excitement of doing mathematics. Colin Adams engages the reader with fascinating examples, superb figures, and thought-provoking ideas. He also presents the remarkable applications of knot theory to modern chemistry, biology, and physics. This is a compelling book that will comfortably escort you into the marvelous world of knot theory. Whether you are a mathematics student, someone working in a related field, or an amateur mathematician, you will find much of interest in The Knot Book.

Topology of Native Acetylcholine Receptor

Topology in Ordered Phases

Network Simulation Experiments Manual
Maintaining the standard of excellence set by the previous edition, this textbook covers the basic geometry of two- and three-dimensional spaces. Written by a master expositor, leading researcher in the field, and MacArthur Fellow, it includes experiments to determine the true shape of the universe and contains illustrated examples and engaging exercises that teach mind-expanding ideas in an intuitive and informal way. Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.

Proceedings of 1992 International Conference on Parallel Processing

Colin Adams, well-known for his advanced research in topology and knot theory, is the author of this exciting new book that brings his findings and his passion for the subject to a more general audience. This beautifully illustrated comic book is appropriate for many mathematics courses at the undergraduate level such as liberal arts math, and topology. Additionally, the book could easily challenge high school students in math clubs or honors math courses and is perfect for the lay math enthusiast. Each copy of Why Knot? is packaged with a plastic manipulative called the Tangle R. Adams uses the Tangle because "you can open it up, tie it in a knot and then close it up again." The Tangle is the ultimate tool for knot theory because knots are defined in mathematics as being closed on a loop. Readers use the Tangle to complete the experiments throughout the brief volume. Adams also presents a illustrative and engaging history of knot theory from its early role in chemistry to modern applications such as DNA research, dynamical systems,
and fluid mechanics. Real math, unreal fun!

Electrokinetics and Catalysis in Microfluidic Systems

Topological defects are the subject of intensive studies in many different branches of physics ranging from cosmology to liquid crystals and from elementary particles to colloids and biological systems. Liquid crystals are fascinating materials which present a great variety of these mathematical objects and can therefore be considered as an extremely useful laboratory for topological defects. This book is the first attempt to present together complementary approaches to the investigations of topological defects in liquid crystals using theory, experiments and computer simulations.

Proceedings of the SIGMETRICS Symposium on Parallel and Distributed Tools

Janice VanCleave's Big Book of Science Experiments

A Study of the Topology and Maturation of the Subunits of the Nicotinic Acetylcholine Receptor Expressed in Vitro

Mathematical Theory of Statistics

Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating
problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.

The Knot Book

Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.

Multiscale Structural Topology Optimization

This volume contains the proceedings of the CRM Workshops on Probabilistic Methods in Spectral Geometry and PDE, held from August 22–26, 2016 and Probabilistic Methods in Topology, held from November 14–18, 2016 at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. Probabilistic methods have played an increasingly important role in many areas of mathematics, from the study of random groups and random simplicial complexes in topology, to the theory of random Schrödinger operators in mathematical physics. The workshop on Probabilistic Methods in Spectral Geometry and PDE brought together some of the leading
researchers in quantum chaos, semi-classical theory, ergodic theory and dynamical systems, partial differential equations, probability, random matrix theory, mathematical physics, conformal field theory, and random graph theory. Its emphasis was on the use of ideas and methods from probability in different areas, such as quantum chaos (study of spectra and eigenstates of chaotic systems at high energy); geometry of random metrics and related problems in quantum gravity; solutions of partial differential equations with random initial conditions. The workshop Probabilistic Methods in Topology brought together researchers working on random simplicial complexes and geometry of spaces of triangulations (with connections to manifold learning); topological statistics, and geometric probability; theory of random groups and their properties; random knots; and other problems. This volume covers recent developments in several active research areas at the interface of Probability, Semiclassical Analysis, Mathematical Physics, Theory of Automorphic Forms and Graph Theory.

Mathematical Representations of the Dynamics of Animal Behaviour

Topology and Physics of Circular DNA presents comprehensive coverage of the physical properties of circular DNA. The author examines how topological constraints arising from cyclization of DNA lead to distinctive properties that make closed molecules radically different from linear DNA. The phenomenon of supercoiling, its geometric and topological analysis, and the formation of noncanonical structures in circular DNA under the influence of supercoiling are emphasized. The combination of consistent theoretical analysis and detailed treatment of major experimental approaches make Topology and Physics of Circular DNA an important
reference volume for biophysicists, biochemists, molecular biologists, and researchers and students who want to expand their understanding of circular DNA.

Experiments in Topology

The second of a three-volume compendium which represents the proceedings from the 1992 International Conference on Parallel Processing. This book covers software. Volumes I and III cover the topics of architecture and algorithms respectively, and are intended for computer professionals in parallel processing, distributed systems and software engineering.

Topologies of Power

The concept of topology has become commonplace in various scientific fields. The next stage is to bring together the knowledge accumulated in these fields. This volume contains articles on experiments and theories in connection with topology, including wide-ranging fields such as materials science, superconductivity, charge density waves, superfluidity, optics, and field theory. The nearly 60 peer-reviewed papers include contributions by noted authors Michael V Berry and Roman W Jackiw. The book serves as an excellent reference for both researchers and graduate students. Sample Chapter(s). Chapter 1: Optical Vorticulture (90 KB). Contents: Topology as a Universal Concept; Topological Crystals; Topological Materials; Topological Defects and Excitations; Topology in Quantum Phenomena; Topology in Optics; Topology in Quantum Device. Readership: Researchers and graduate students in materials science, condensed matter physics, optics, astrophysics and polymer science.

Topology for Computing
Multiscale Structural Topology Optimization discusses the development of a multiscale design framework for topology optimization of multiscale nonlinear structures. With the intention to alleviate the heavy computational burden of the design framework, the authors present a POD-based adaptive surrogate model for the RVE solutions at the microscopic scale and make a step further towards the design of multiscale elastoviscoplastic structures. Various optimization methods for structural size, shape, and topology designs have been developed and widely employed in engineering applications. Topology optimization has been recognized as one of the most effective tools for least weight and performance design, especially in aeronautics and aerospace engineering. This book focuses on the simultaneous design of both macroscopic structure and microscopic materials. In this model, the material microstructures are optimized in response to the macroscopic solution, which results in the nonlinearity of the equilibrium problem of the interface of the two scales. The authors include a reduce database model from a set of numerical experiments in the space of effective strain. Presents the first attempts towards topology optimization design of nonlinear highly heterogeneous structures Helps with simultaneous design of the topologies of both macroscopic structure and microscopic materials Helps with development of computer codes for the designs of nonlinear structures and of materials with extreme constitutive properties Focuses on the simultaneous design of both macroscopic structure and microscopic materials Includes a reduce database model from a set of numerical experiments in the space of effective strain

Topology in Ordered Phases
Parameter and Topology Uncertainty for Optimal Experimental Design

Z-pinch plasma dynamics are largely determined by the current and magnetic field topology of the system. Measurement of the magnetic fields allows for the inference of the current distribution, but is in practice difficult to measure in experiments. This leads to a high dependence on numerical simulations for extracting this information, but without quality experimental data, may not be entirely reliable for this purpose. Proton deflectometry, or proton radiography, is a relatively new diagnostic developed for investigating electromagnetic fields in high energy-density plasmas since it provides data with high spatial and temporal resolution compared to traditional field diagnostics. It was developed in the laser-plasma-interaction community as a means of determining electric and magnetic field strength and orientation during laser-driven plasma experiments. In this work, the method was developed for use on Mega-Amp-scale pulsed-power-driven plasma experiments. In one configuration, a proton beam was directed radially, with respect to the z-axis of a pulsed-power-driven short-circuit load. In this setup, an azimuthally symmetric magnetic field is generated around the short-circuit load, as a current pulse, 0.6 MA in 0-100% rise-time 200 ns with an approximately sine-squared waveform. Scaled laboratory astrophysics experiments modeling the dynamics of universal astrophysical phenomena such as plasma jets have recently become an area of great interest. Such experiments are vital to resolving long-standing questions about the roles of various physical processes in the dynamics of such objects. The application of proton deflectometry to scaled laboratory astrophysics experiments revealed details of the current and magnetic field topology which was previously accessible only in numerical codes. One such
load is the radial foil load, designed to replicate the propagation of a jet during the formation stages of a star. The data from this work was used to benchmark a resistive MHD code, Gorgon, designed to reproduce the Z-pinch experiments as well as astrophysical phenomena. The simulation results were found to agree with the experimental data, meaning that the current and magnetic field topology could be recovered from the code. The demonstration of this diagnostic technique opens up many possibilities for examining the current and magnetic field topology in other Z-pinch experiments.

Why Knot?

Advanced Topological Insulators

This book is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for researchers and graduate students preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with the fundamental description on the topological phases of matter such as one, two- and three-dimensional topological insulators, and methods and tools for topological material's investigations, topological insulators for advanced optoelectronic devices, topological superconductors, saturable absorber and in plasmonic devices. Advanced Topological Insulators provides researchers and graduate students with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Experiments in topology

Topology and Physics of Circular DNA presents comprehensive coverage of the physical properties of circular DNA. The author examines how topological constraints arising from cyclization of DNA lead to distinctive properties that make closed molecules radically different from linear DNA. The phenomenon of supercoiling, its geometric and topological analysis, and the formation of noncanonical structures in circular DNA under the influence of supercoiling are emphasized. The combination of consistent theoretical analysis and detailed treatment of major experimental approaches make Topology and Physics of Circular DNA an important reference volume for biophysicists, biochemists, molecular biologists, and researchers and students who want to expand their understanding of circular DNA.

Design of Probing Experiments and Online Monitoring of Network Performance

Janice VanCleave once again ignites children’s love for science in her all-new book of fun experiments—featuring a fresh format, new experiments, and updated content standards. From everyone’s favorite science teacher comes Janice VanCleave's Big Book of Science Experiments. This user-friendly book gets kids excited about science with lively experiments designed to spark imaginations and encourage science learning. Using a few handy supplies, you will have your students exploring the wonders of science in no time. Simple step-by-step instructions and color illustrations help you easily demonstrate the fundamental concepts of astronomy, biology, chemistry, and more. Children will delight in making their own slime and creating safe explosions as they learn important science skills and processes. Author Janice VanCleave
passionately believes that all children can learn science. She has helped millions of students experience the magic and mystery of science with her time-tested, thoughtfully-designed experiments. This book offers both new and classic activities that cover the four dimensions of science—physical science, astronomy, Biology, and Earth Science—and provide a strong foundation in science education for students to build upon. An ideal resource for both classroom and homeschool environments, this engaging book: Enables students to experience science firsthand and discuss their observations Offers low-prep experiments that require simple, easily-obtained supplies Presents a modern, full-color design that appeals to students Includes new experiments, activities, and lessons Correlates to National Science Standards Janice VanCleave's Big Book of Science Experiments is a must-have book for the real-world classroom, as well as for any parent seeking to teach science to their children.

Investigation of Magnetic Field and Current Topology in Z-pinch Plasmas

The Shape of Space

One of the traditional ways mathematical ideas and even new areas of mathematics are created is from experiments. One of the best-known examples is that of the Fermat hypothesis, which was conjectured by Fermat in his attempts to find integer solutions for the famous Fermat equation. This hypothesis led to the creation of a whole field of knowledge, but it was proved only after several hundred years. This book, based on the author's lectures, presents several new directions of mathematical research. All of these directions are based on numerical experiments conducted by the author, which led to new
hypotheses that currently remain open, i.e., are neither proved nor disproved. The hypotheses range from geometry and topology (statistics of plane curves and smooth functions) to combinatorics (combinatorial complexity and random permutations) to algebra and number theory (continuous fractions and Galois groups). For each subject, the author describes the problem and presents numerical results that led him to a particular conjecture. In the majority of cases there is an indication of how the readers can approach the formulated conjectures (at least by conducting more numerical experiments). Written in Arnold's unique style, the book is intended for a wide range of mathematicians, from high school students interested in exploring unusual areas of mathematics on their own, to college and graduate students, to researchers interested in gaining a new, somewhat nontraditional perspective on doing mathematics. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).

WORM '04

Experimental Mathematics

Topologies of Power amounts to a radical departure in the way that power and space have been understood. It calls into question the very idea that power is simply extended across a given territory or network, and argues that power today has a new found ‘reach’. Topological shifts have
subtly altered the reach of power, enabling governments, corporations and NGOs alike to register their presence through quieter, less brash forms of power than domination or overt control. In a world in which proximity and distance increasingly play across one another, topology offers an insight into how power remains continuous under transformation: the same but different in its ability to shape peoples’ lives. Drawing upon a range of political, economic and cultural illustrations, the book sets out a clear and accessible account of the topological workings of power in the contemporary moment. It will be invaluable for both students and academics in human geography, politics, sociology, and cultural studies.

Topology and Physics of Circular DNA (1992)

Visualization and mathematics have begun a fruitful relationship, establishing links between problems and solutions of both fields. In some areas of mathematics, like differential geometry and numerical mathematics, visualization techniques are applied with great success. However, visualization methods are relying heavily on mathematical concepts. Applications of visualization in mathematical research and the use of mathematical methods in visualization have been topic of an international workshop in Berlin in June 1995. Selected contributions treat topics of particular interest in current research. Experts are reporting on their latest work, giving an overview on this fascinating new area. The reader will get insight to state-of-the-art techniques for solving visualization problems and mathematical questions.

Computational Topology

Introduction to Experimental Mathematics
A prominent popular science writer presents simple instructions for 100 illustrated experiments. Memorable, easily understood experiments illuminate principles related to astronomy, chemistry, physiology, psychology, mathematics, topology, probability, acoustics, other areas.

Topology and Physics of Circular DNA from the Series

The emerging field of computational topology utilizes theory from topology and the power of computing to solve problems in diverse fields. Recent applications include computer graphics, computer-aided design (CAD), and structural biology, all of which involve understanding the intrinsic shape of some real or abstract space. A primary goal of this book is to present basic concepts from topology and Morse theory to enable a non-specialist to grasp and participate in current research in computational topology. The author gives a self-contained presentation of the mathematical concepts from a computer scientist's point of view, combining point set topology, algebraic topology, group theory, differential manifolds, and Morse theory. He also presents some recent advances in the area, including topological persistence and hierarchical Morse complexes. Throughout, the focus is on computational challenges and on presenting algorithms and data structures when appropriate.

Entertaining Science Experiments with Everyday Objects

Probabilistic Methods in Geometry, Topology and Spectral Theory
A major effort of systems biology is the building of accurate and detailed models of biological systems. Because biological models are large, complex, and highly nonlinear, building accurate models requires large quantities of data and algorithms appropriate to translate this data into a model of the underlying system. This thesis describes the development and application of several algorithms for simulation, quantification of uncertainty, and optimal experimental design for reducing uncertainty. We applied a previously described algorithm for choosing optimal experiments for reducing parameter uncertainty as estimated by the Fisher information matrix. We found, using a computational scenario where the true parameters were unknown, that the parameters of the model could be recovered from noisy data in a small number of experiments if the experiments were chosen well. We developed a method for quickly and accurately approximating the probability distribution over a set of topologies given a particular data set. The method was based on a linearization applied at the maximum a posteriori parameters. This method was found to be about as fast as existing heuristics but much closer to the true probability distribution as computed by an expensive Monte Carlo routine. We developed a method for optimal experimental design to reduce topology uncertainty based
on the linear method for topology probability. This method was a Monte Carlo method that used the linear method to quickly evaluate the topology uncertainty that would result from possible data sets of each candidate experiment. We applied the method to a model of ErbB signaling. Finally, we developed a method for reducing the size of models defined as rule-based models. Unlike existing methods, this method handles compartments of models and allows for cycles between monomers. The methods developed here generally improve the detail at which models can be built, as well as quantify how well they have been built and suggest experiments to build them even better.

Parallel Network Ram Effectively Utilizing Global Cluster Memory for Large Data-intensive Programs

This book is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for researchers and graduate students preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with the fundamental description on the topological phases of matter such as one, two- and three-dimensional topological insulators, and methods and tools for topological material's investigations, topological insulators for advanced optoelectronic devices, topological superconductors, saturable absorber and in plasmonic devices. Advanced Topological Insulators provides researchers and graduate students with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Up-down Symmetry in Double Null Divertor Experiments and Magnetic Field Topology

Provides 19 experiments that illustrate topological problems.

Visualization and Mathematics

Topology

Mathematics is not, and never will be, an empirical science, but mathematicians are finding that the use of computers and specialized software allows the generation of mathematical insight in the form of conjectures and examples, which pave the way for theorems and their proofs. In this way, the experimental approach to pure mathematics is revolutionizing the way research mathematicians work. As the first of its kind, this book provides material for a one-semester course in experimental mathematics that will give students the tools and training needed to systematically investigate and develop mathematical theory using computer programs written in Maple. Accessible to readers without prior programming experience, and using examples of concrete mathematical problems to illustrate a wide range of techniques, the book gives a thorough introduction to the field of experimental mathematics, which will prepare students for the challenge posed by open mathematical problems.

Experiments in Topology

Network Simulation Experiments Manual, Third Edition, is a practical tool containing detailed, simulation-based experiments to help students and professionals learn...
about key concepts in computer networking. It allows the networking professional to visualize how computer networks work with the aid of a software tool called OPNET to simulate network function. OPNET provides a virtual environment for modeling, analyzing, and predicting the performance of IT infrastructures, including applications, servers, and networking technologies. It can be downloaded free of charge and is easy to install. The book’s simulation approach provides a virtual environment for a wide range of desirable features, such as modeling a network based on specified criteria and analyzing its performance under different scenarios. The experiments include the basics of using OPNET IT Guru Academic Edition; operation of the Ethernet network; partitioning of a physical network into separate logical networks using virtual local area networks (VLANs); and the basics of network design. Also covered are congestion control algorithms implemented by the Transmission Control Protocol (TCP); the effects of various queuing disciplines on packet delivery and delay for different services; and the role of firewalls and virtual private networks (VPNs) in providing security to shared public networks. Each experiment in this updated edition is accompanied by review questions, a lab report, and exercises. Networking designers and professionals as well as graduate students will find this manual extremely helpful. Updated and expanded by an instructor who has used OPNET simulation tools in his classroom for numerous demonstrations and real-world scenarios. Software download based on an award-winning product made by OPNET Technologies, Inc., whose software is used by thousands of commercial and government organizations worldwide, and by over 500 universities. Useful experimentation for professionals in the workplace who are interested in learning and demonstrating the capability of evaluating different commercial networking products, i.e., Cisco routers. Covers the core networking topologies and includes
assignments on Switched LANs, Network Design, CSMA, RIP, TCP, Queuing Disciplines, Web Caching, etc.

Advanced Topological Insulators

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.

Copyright code: 7260fc8229fe6aae25e19e5234b174bb