Handbook of Biopolymers and Biodegradable Plastics

Offering complete and in-depth data and information on plastics extrusion, this practical handbook presents the technology of the subject rather than the theory. Presents an overview of extrusion technology as applied to the operation of extrusion systems and the design of tooling and equipment for use in the process. Provides basic technical information on the behavior of polymer and plastics materials in the extrusion process. Contains tool descriptions that provide a basis for the analysis of existing product lines as examples for the design of new systems. Includes illustrations of and background material on control systems for the extruder and extrusion process.

Plastic Part Design for Injection Molding

Tougher and cheaper than other materials, thermoplastic resins are used in applications ranging from aircraft frames to glass windows. This is the first authoritative source for building and evaluating new product lines. Written by a top team of international experts, this reference incorporates the chemical, mechanical, and physical data necessary to compare and evaluate existing product lines with new and emerging products.

Extrusion

Design and Manufacture of Plastic Components for Multifunctionality: Structural Composites, Injection Molding, and 3D Printing presents the latest information on how plastics manufacturers are increasingly being driven towards carbon emission reduction, lightweighting, and cost savings through process integration. These technologies have the potential to revolutionize future products with built-in functionality such as sensors, smart packaging, and damage detection technology for everything from milk bottles and salad packaging to automotive bumpers and plane fuselages. This book introduces the three core manufacturing methods for multifunctional materials, composites, injection molding, and 3D printing, all processes facing challenges for the implementation of new technology. Users will find a book that brings together both process and material advances in this
area, giving process engineers, designers, and manufacturers the information they need to choose the appropriate material and process for the product they are developing. Provides an introduction to the latest technologies in the area of multifunctionality, enabling engineers to implement new breakthroughs in their own businesses. Gives an understanding of the processes that need to be considered in both design and manufacture of future devices, while using materials from a broader palette than used in existing manufacturing processes. Includes best practice guidance and flow charts to aid in material and process selection. Covers revolutionary future products with built-in functionality such as sensors, smart packaging, and damage detection technology for everything from milk bottles and salad packaging to automotive bumpers and plane fuselages.

Plastic Product Material and Process Selection Handbook

The Effect of Sterilization Methods on Plastics and Elastomers, Fourth Edition brings together a wide range of essential data on the sterilization of plastics and elastomers, thus enabling engineers to make optimal material choices and design decisions. The data tables in this book enable engineers and scientists to select the right materials and sterilization method for a given product or application. The book is a unique and essential reference for anybody working with plastic materials that are likely to be exposed to sterilization methods, be it in medical device or packaging development, food packaging or other applications. Presents essential data and practical guidance for engineers and scientists working with plastics in applications that require sterile packaging and equipment. Updated edition removes obsolete data, updates manufacturers, verifies data accuracy, and adds new plastics materials for comparison. Provides essential information and guidance for FDA submissions required for new medical devices.

Plastics Products Design Handbook

The new edition of this bestselling reference provides fully updated and detailed descriptions of plastics joining processes, plus an extensive compilation of data on joining specific materials. The volume is divided into two main parts: processes and materials. The processing section has 18 chapters, each explaining a different joining technique. The materials section has joining information for 25 generic polymer families. Both sections contain data organized according to the joining methods used for that material. *A significant and extensive update from experts at The Welding Institute.* *A systematic approach to discussing each joining method including: process, advantages and disadvantages, applications, materials, equipment, joint design, and welding parameters.* *Includes international suppliers' directory and glossary of key joining terms.* *Includes new techniques such as flash free welding and friction stir welding.* Covers thermoplastics, thermosets, elastomers, and rubbers.

Plastics Technology Handbook, Fourth Edition

This definitive book provides a comprehensive account of the full range of dies used for extrusion of plastics and elastomers. The distinctive features of the various types of dies are described in detail. Expert advice on the configuration of dies is given, and the possibilities of computer-aided design, as well as its limitations, are demonstrated. Fundamentals and computational procedures are clearly explained so that no special prior knowledge of the subject is required. The mechanical configuration, handling, and maintenance of extrusion dies are described. Calibration procedures for pipes and profiles are also discussed. This book was written for plastics engineers who need daily support in their practical work in industry and science, as well as for students preparing for their professional life. The 4th edition is brought up to date with several important additions, including coverage of multilayer (>15 layer) dies, melt encapsulation, and simulation tools (rheological/thermal CFD simulations).

Plastics Engineering Handbook Of The Society Of The Plastics Industry

Applied Plastics Engineering Handbook: Processing, Materials, and Applications, Second Edition, covers both the polymer basics that are helpful to
bring readers quickly up-to-speed if they are not familiar with a particular area of plastics processing and the recent developments that enable practitioners to discover which options best fit their requirements. New chapters added specifically cover polyamides, polyimides, and polyester. Hot topics such as 3-D printing and smart plastics are also included, giving plastics engineers the information they need to take these embryonic technologies and deploy them in their own work. With the increasing demands for lightness and fuel economy in the automotive industry (not least due to CAFE standards), plastics will soon be used even further in vehicles. A new chapter has been added to cover the technology trends in this area, and the book has been substantially updated to reflect advancements in technology, regulations, and the commercialization of plastics in various areas. Recycling of plastics has been thoroughly revised to reflect ongoing developments in sustainability of plastics. Extrusion processing is constantly progressing, as have the elastomeric materials, fillers, and additives which are available. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained, along with techniques for testing, measuring, enhancing, and analyzing them. Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don't teach you in school and experienced practitioners evaluating new technologies or getting up-to-speed in a new field. Presents an authoritative source of practical advice for engineers, providing guidance from experts that will lead to cost savings and process improvements Ideal introduction for both new engineers and experienced practitioners entering a new field or evaluating a new technology Updated to include the latest technology, including 3D Printing, smart polymers, and thorough coverage of biopolymers and biodegradable plastics

Applied Plastics Engineering Handbook

This book provides a simplified, practical, and innovative approach to understanding the design and manufacture of plastic products in the World of Plastics. The concise and comprehensive information defines and focuses on past, current, and future technical trends. The handbook reviews over 20,000 different subjects; and contains over 1,000 figures and more than 400 tables. Various plastic materials and their behavior patterns are reviewed. Examples are provided of different plastic products and relating to them critical factors that range from meeting performance requirements in different environments to reducing costs and targeting for zero defects. This book provides the reader with useful pertinent information readily available as summarized in the Table of Contents, List of References and the Index.

International Plastics Handbook

In this 3rd Edition of the Reinforced Plastics Handbook the authors have continued the approach of the late John Murphy, author of the first and second editions. The book provides a compendium of information on every aspect of materials, processes, designs and construction. Fiber-reinforced plastics are a class of materials in which the basic properties of plastics are given mechanical reinforcement by the addition of fibrous materials. The wide choice of plastics resin matrices and the correspondingly wide choice of reinforcing materials mean that the permutations are virtually unlimited. But the optimum properties of resin and reinforcement cannot be obtained unless there is an effective bond between the two, and this is the continuing objective of reinforced plastics production, design and processing. · New 3rd edition of this comprehensive practical manual · This is a 'bible' for all those involved in the reinforced plastics industry, whether manufacturers, specifiers, designers or end-users. · Has been completely revised and updated to reflect all the latest developments in the industry

Plastics Product Design Engineering Handbook

The goal of the book is to assist the designer in the development of parts that are functional, reliable, manufacturable, and aesthetically pleasing. Since injection molding is the most widely used manufacturing process for the production of plastic parts, a full understanding of the integrated

Plastics Design Handbook

This book provides a simplified and practical approach to designing with plastics that fundamentally relates to the load, temperature, time, and environment subjected to a product. It will provide the basic behaviors in what to consider when designing plastic products to meet performance and cost requirements. Important aspects are presented such as understanding the advantages of different shapes and how they influence designs. Information is concise, comprehensive, and practical. Review includes designing with plastics based on material and process behaviors. As designing with any materials (plastic, steel, aluminum, wood, etc.) it is important to know their behaviors in order to maximize product performance-to-cost efficiency. Examples of many different designed products are reviewed. They range from toys to medical devices to cars to boats to underwater devices to containers to springs to pipes to buildings to aircraft to space craft. The reader's product to be designed can directly or indirectly be related to product design reviews in the book. Important are behaviors associated and interrelated with plastic materials (thermoplastics, thermosets, elastomers, reinforced plastics, etc.) and fabricating processes (extrusion, injection molding, blow molding, forming, foaming, rotational molding, etc.). They are presented so that the technical or non-technical reader can readily understand the interrelationships.

Handbook of Thermoset Plastics

Polypropylene: The Definitive User's Guide and Databook presents in a single volume a panoramic and up-to-the-minute user's guide for today's most important thermoplastic. The book examines every aspect: science, technology, engineering, properties, design, processing, applications of the continuing development and use of polypropylene. The unique treatment means that specialists can not only find what they want but for the first time can relate to and understand the needs and requirements of others in the product development chain. The entire work is underpinned by very extensive collections of property data that allow the reader to put the information to real industrial and commercial use. Despite the preeminence and unrivaled versatility of polypropylene as a thermoplastic material to manufacture, relatively few books have been devoted to its study. Polypropylene: The Definitive User's Guide and Databook not only fills the gap but breaks new ground in doing so. Polypropylene is the most popular thermoplastic in use today, and still one of the fastest growing. Polypropylene: The Definitive User's Guide and Databook is the complete workbook and reference resource for all those who work with the material. Its comprehensive scope uniquely caters to polymer scientists, plastics engineers, processing technologists, product designers, machinery and mold makers, product managers, end users, researchers and students alike.

Plastics Engineering

This handbook was written for the injection molding product designer who has a limited knowledge of engineering polymers. It is a guide for the designer to decide which resin and design geometries to use for the design of plastic parts. It can also offer knowledgeable advice for resin and machine selection and processing parameters. Manufacturer and end user satisfaction is the ultimate goal.

Injection Mold Design Engineering

Injection moulding is one of the most important methods of manufacturing plastics products. Through the development of sophisticated microprocessor control systems, the modern injection moulding machine is capable of producing precision mouldings with close tolerances in large
numbers and with excellent reproducibility. This capability, however, is often limited by the lack of a proper appreciation of mould design. The mould, or tool as it is often called, is at the heart of the injection moulding process. Its basic function is to accept the plastic melt from the injection unit and cool it to the desired shape prior to ejection. It is not, however, simply a matter of the mould having an impression of the shape to be moulded. Many other factors have to be taken into account - for example, the ability to fill the mould impression properly and efficiently without inducing weaknesses in the moulding and the efficient cooling of the moulding in order to maximise production rates without diminishing the quality of the moulding. In addition, the type of mould, gate and runner system, and ejection system which will best meet the needs of a particular job specification have to be determined. In our experience lack of attention to such factors leads to the mould limiting the ability of the injection moulding machine and preventing the process as a whole from achieving its true potential.

Handbook of Thermoplastics Injection Mould Design

This book is aimed at designers who have had limited or no experience with plastics materials as well as a more experienced designer who is designing a part for a use, process or an application that they are not familiar with. The reader is provided with an introduction to plastics as a design material and a discussion of materials commonly in use today. There is a discussion of a variety of processes available to the designer to make a part along with the design considerations each process will entail. This section also includes a discussion of useful prototyping processes, including advantages and disadvantages of each. Next, the book will discuss general design considerations applicable to most plastics product designs. In section 2 of the book the author will discuss elements of design of a number of generic plastic product types based on his 40+ years of experience of product design and development for several companies with a variety of products. This section will include discussions of structural components, gears, bearings, hinges, snap fits, packaging, pressure vessels, and optical components. This section will discuss the general considerations that apply to these applications as well as specific insights about each particular application. The book concludes with a discussion of the general design process.

Plastics Institute of America Plastics Engineering, Manufacturing & Data Handbook

This book provides a structured methodology and scientific basis for engineering injection molds. The topics are presented in a top-down manner, beginning with introductory definitions and the big picture before proceeding to layout and detailed design of molds. The book provides very pragmatic analysis with worked examples that can be readily adapted to real-world product design applications. It will help students and practitioners to understand the inner workings of injection molds and encourage them to think outside the box in developing innovative and highly functional mold designs. This new edition has been extensively revised with new content that includes more than 80 new and revised figures and tables, coverage of development strategy, 3D printing, in-mold sensors, and practical worksheets, as well as a completely new chapter on the mold commissioning process, part approval, and mold maintenance.

Mechanical Fastening of Plastics

This book provides solutions to many vital questions on the important property differences and advantages of individual engineering thermoplastics. It is useful for executives; managers; design, materials, and sales engineers; researchers; materials and product manufacturers; and compounders.

Reinforced Plastics Handbook

An outstanding and thorough presentation of the complete field of plastics processing Handbook of Plastic Processes is the only
comprehensivereference covering not just one, but all major processes used to produce plastic products-helping designers and manufacturers in selecting the best process for a given product while enabling users to better understand the performance characteristics of each process. The authors, all experts in their fields, explain in clear, concise, and practical terms the advantages, uses, and limitations of each process, as well as the most modern and up-to-date technologies available in their application. Coverage includes chapters on: Injection molding Compression and transfer molding Sheet extrusion Blow molding Calendering Foam processing Reinforced plastics processing Liquid resin processing Rotational molding Thermoforming Reaction injection molding Compounding, mixing, and blending Machining and mechanical fabrication Assembly, finishing, and decorating Each chapter details a particular process, its variations, the equipment used, the range of materials utilized in the process, and its advantages and limitations. Because of its increasing impact on the industry, the editor has also added a chapter on nanotechnology in plastics processing.

SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc.

Stay ahead of the learning curve in the fast-evolving field of materials technology Need to come up with new product concepts? Do you select the materials and designs that make innovative ideas work? Edited by Charles Harper, an internationally respected expert in materials technology, Handbook of Materials for Product Design is an indispensable asset to anyone involved in product creation. This unique reference can help you: *Generate ideas for new products * Specify expertly for robust, manufacturable, economical, customer-pleasing products * Compare options easily with plentiful data tables, charts, graphs, and illustrations * Cut costs and improve new product performance * Create unique materials with expert guidance* Find needed data on design, testing, specifications, standards, recyclability, and biodegradability

The Effect of Sterilization on Plastics and Elastomers

This book is for people involved in working with plastic material and plastic fabricating processes. The information and data in this book are provided as a comparative guide to help in understanding the performance of plastics and in making the decisions that must be made when developing a logical approach to fabricating plastic products to meet performance requirements at the lowest costs. It is formatted to allow for easy reader access and this care has been translated into the individual chapter constructions and index. This book makes very clear the behaviour of the 35,000 different plastics with the different behaviours of the hundreds of processes. Products reviewed range from toys to medical devices, to cars, to boats, to underwater devices, containers, springs, pipes, aircraft and spacecraft. The reader's product to be designed and/or fabricated can be directly or indirectly related to plastic materials, fabricating processes and/or product design reviews in this book. *Essential for people involved in working with plastic material and plastic fabricating processes *Will help readers understand the performance of plastics *Helps readers to make decisions which meet performance requirements and to keep costs low

The Plastics Handbook

Because the field of plastics is one of the fastest changing areas today, the need arises to offer relevant, comprehensive material on polymers. An established source of information on modern plastics, the Plastics Technology Handbook continues to provide up-to-date coverage on the properties, processing methods, and applications of polymers. Retaining the easy-to-follow structure of the previous editions, this fourth edition includes new topics of interest that reflect recent developments and lead to better insights into the molecular behavior of polymers. New to the Fourth Edition Advances in supramolecular polymerization, flame retardancy, polymer-based nanomedicines, and drug delivery The new concept of oxo-biodegradable polymers Broadened discussion on plastic foams and foam extrusion processes More information on the processing and applications of industrial polymers, including the emerging field of nanoblends Developments in polymer synthesis and applications, such as polymeric sensors,
hydrogels and smart polymers, hyperbranched polymers, shape memory polymers, polymeric optical fibers, scavenger resins, polymer nanocomposites, polymerization-filled composites, and wood-polymer composites A state-of-the-art account of the various available methods for plastics recycling Advances in the use of polymers in packaging, construction, the automotive and aerospace industries, agriculture, electronics and electrical technology, biomedical applications, corrosion prevention, and sports and marine applications Plastics Technology Handbook, Fourth Edition thoroughly covers traditional industrial polymers and their processing methods as well as contemporary polymeric materials, recent trends, and the latest applications.

Designing with Plastics and Composites: A Handbook

State-of-the-art guide to plastic product design, manufacture and application. Edited by Charles A. Harper and sponsored by Modern Plastics, the industry's most prestigious trade magazine, Modern Plastics Handbook packs a wealth of up-to-date knowledge about plastics processes, forms and formulations, design, equipment, testing and recycling. This A-to-Z guide keeps you on top of: *Properties and performance of thermoplastics, polymer blendsthermosets, reinforced plastics and compositesnatural and synthetic elastomers *Processes from extrusion, injection and blow molding to thermoforming, foam processing, hand lay-up and filament winding, and many, many more *Fabricatingpost-production finishing and bondingcoatings and finishes, subjects difficult to find treated elsewhere in print *More!

Polypropylene

How easy life would be if only moldings were the same size and shape as the mold. But they never are, as molders, toolmakers, designers and end users know only too well. Shrinkage means that the size is always different; warpage often changes the shape too. The effects are worse for some plastics than others. Why is that? What can you do about it? The Handbook of Molded Part Shrinkage and Warpage is the first and only book to deal specifically with this fundamental problem. Jerry Fischer’s Handbook explains in plain terms why moldings shrink and warp, shows how additives and reinforcements change the picture, sets out the effect of molding process conditions, and explains why you never can have a single ‘correct’ shrinkage value. It goes on to demonstrate how to alleviate the problem through careful design of the molded part and the mold, and by proper material selection. It also examines computer-aided methods of forecasting shrinkage and warpage. And most important of all, the Handbook gives you the data you need to work with. . Authoritative and rooted in extensive industrial experience, the expert guidance contained in this handbook offers practical understanding to novices, and new insights to readers already skilled in the art of injection molding and mold making. Contains the answers to common problems and detailed advice on how to control mold and post-mold shrinkage and warpage. Case Studies illustrate and enrich the text; Data tables provide the empirical data that is essential for success, but hard to come by.

Permeability Properties of Plastics and Elastomers

The second edition of Extrusion is designed to aid operators, engineers, and managers in extrusion processing in quickly answering practical day-to-day questions. The first part of the book provides the fundamental principles, for operators and engineers, of polymeric materials extrusion processing in single and twin screw extruders. The next section covers advanced topics including troubleshooting, auxiliary equipment, and coextrusion for operators, engineers, and managers. The final part provides applications case studies in key areas for engineers such as compounding, blown film, extrusion blow molding, coating, foam, and reprocessing. This practical guide to extrusion brings together both equipment and materials processing aspects. It covers basic and advanced topics, for reference and training, in thermoplastics processing in the extruder. Detailed reference data are provided on such important operating conditions as temperatures, start-up procedures, shear rates, pressure drops, and safety. A practical guide to the selection, design and optimization of extrusion processes and equipment Designed to improve production efficiency
Fatigue and Tribological Properties of Plastics and Elastomers

Plastics have become increasingly important in the products used in our society, ranging from housing to packaging, transportation, business machines and especially in medicine and health products. Designing plastic parts for this wide range of uses has become a major activity for designers, architects, engineers, and others who are concerned with product development. Because plastics are unique materials with a broad range of proper tives they are adaptable to a variety of uses. The uniqueness of plastics stems from their physical characteristics which are as different from metals, glass, and ceramics as these materials are different from each other. One major concern is the design of structures to take loads. Metals as well as the other materials are assumed to respond elastically and to recover completely their original shape after the load is removed. Based on this simple fact, extensive literature on applied mechanics of materials has been developed to enable designers to predict accurately the performance of structures under load. Many engineers depend on such texts as Timoshenko's Strength of Materials as a guide to the performance of structures. Using this as a guide, generations of engineers have designed economical and safe structural parts. Unfortunately, these design principles must be modified when designing with plastics since they do not respond elastically to stress and undergo permanent deformation with sustained loading.

Engineering Thermoplastics

From plastics with the strength and durability of metal, to mass-produced skins, sensuous plastics, and rental DVDs that expire 48 hours after you've opened the packaging, this title offers a fascinating insight into the most innovative and unusual plastics for designers and manufacturers throughout the world.

Plastics Product Design

Permeability properties are essential data for the selection of materials and design of products across a broad range of market sectors from food packaging to Automotive applications to Medical Devices. This unique handbook brings together a wealth of permeability data in a form that enables quick like-for-like comparisons between materials. The data is supported by a full explanation of its interpretation, and an introduction to the engineering aspects of permeability in polymers. The third edition includes expanded explanatory text which makes the book accessible to novices as well as experienced engineers, written by industry insider and author Larry McKeen (DuPont), and 20% new data and major new explanatory text sections to aid in the interpretation and application of the data. A unique collection of permeability data designed to enable quick like-for-like comparisons between different materials Third edition includes 20% new data and expanded explanatory text, which makes the book accessible to novices as well as experienced engineers Essential reference for materials engineers, design engineers and applications engineers across sectors including packaging, automotive and medical devices

Engineering Plastics Handbook

This book provides information on complexities, peculiarities, and limitations of various molding processes, and the comparative advantages and disadvantages of the possible plastic products manufacturing techniques, to permit an ideal match of good design and processing.
Plastics Products Design Handbook

Thermosetting plastics are a distinct category of plastics whose high performance, durability and reliability at high temperatures makes them suitable for specialty applications ranging from automotive and aerospace through to electronic packaging and consumer products (your melamine kitchen worktop is a thermoset resin!). Recent developments in thermoset plastics technology and processes has broadened their use exponentially over recent years, and these developments continue: in November 2011, French scientists created a new lightweight thermoset that is as strong and stable as previous materials yet can be easily reworked and reshaped when heated which makes it unique amongst thermosets and allows for repair and recycling. The Handbook of Thermoset Plastics, now in its 3rd edition, provides a comprehensive survey of the chemical processes, manufacturing techniques and design properties of each polymer, along with their applications. Written by a team of highly experienced practitioners, the practical implications of using thermoset plastics are presented – both their strengths and weaknesses. The data and descriptions presented here enable engineers, scientists and technicians to form judgments and take action on the basis of informed analysis. The aim of the book is to help the reader to make the right decision and take the correct action – avoiding the pitfalls the authors’ experience has uncovered. The new edition has been updated throughout to reflect current practice in manufacturing and processing, featuring: Case Studies to demonstrate how particular properties make different polymers suitable for different applications, as well as covering end-use and safety considerations. A new chapter on using nanoparticles to enhance thermal and mechanical properties. A new chapter describing new materials based on renewable resources (such as soy-based thermoset plastics). A new chapter covering recent developments and potential future technologies such as new catalysts for Controlled Radical Polymerization. Goodman and Dodiuk-Kenig provide a comprehensive reference guide to the chemistry, manufacturing and applications of thermosets. Updated to include recent developments in manufacturing – from biopolymers to nanocomposites. Case Studies illustrate applications of key thermoset plastics.

Design and Manufacture of Plastic Components for Multifunctionality

This text provides a unique, practical and comprehensive 'how to' introduction to plastic-to-plastic, non-permanent assemblies. Covering a full range of information in an easy to understand, nontechnical format, this outstanding work affords the confident understanding needed to keep pace with advances in plastic technology.

Extrusion Dies for Plastics and Rubber

I am pleased to present the Fifth Edition of the Plastics Engineering Handbook. Last published in 1976, this version of the standard industry reference on plastics processing incorporates the numerous revisions and additions necessitated by 14 years of activity in a dynamic industry. At that last printing, then-SPI President Ralph L. Harding, Jr. anticipated that plastics production would top 26 billion pounds in 1976 (up from 1.25 billion in 1947, when the First Edition of this book was issued). As I write, plastics production in the United States had reached almost 60 billion pounds annually. Indeed, the story of the U.S. plastics industry always has been one of phenomenal growth and unparalleled innovation. While these factors make compilation of a book such as this difficult, they also make it necessary. Thus I acknowledge all those who worked to gather and relate the information included in this 1991 edition and thank them for the effort it took to make the Plastics Engineering Handbook a definitive source and invaluable tool for our industry. Larry L. Thomas President The Society of the Plastics Industry, Inc.

Handbook of Plastics Joining
Handbook of Molded Part Shrinkage and Warpage

The first textbook to cover both properties and processing of reinforced and unreinforced plastics to this level. It assumes no prior knowledge of plastics and emphasizes the practical aspects of the subject. In this second edition over half the book has been rewritten and the remainder has been updated and reorganized. Early chapters give an introduction to the types of plastics which are currently available and describe how a designer goes about selection of a plastic for a particular application. Later chapters lead the reader into more advanced aspects of mechanical design and analysis of polymer melt flow. All techniques developed are illustrated by numerous worked examples, and several problems are given at the end of each chapter - the solutions to which form an Appendix.

Applied Plastics Engineering Handbook

Biopolymers and Biodegradable Plastics are a hot issue across the Plastics industry, and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction industry to the automotive sector. This book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers. Topics covered include preparation, fabrication, applications and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed. Dr Ebnesajjad provides readers with an in-depth reference for the plastics industry – material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators – and for industry sectors utilizing biopolymers – automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry. Essential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics. Includes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds. Coverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.

Handbook of Plastic Processes

For some time there has been a strong need in the plastic and related industries for a detailed, practical book on designing with plastics and composites (reinforced plastics). This one-source book meets this criterion by clearly explaining all aspects of designing with plastics, as can be seen from the Table of Contents and Index. It provides information on what is ahead as well as today's technology. It explains how to interrelate the process of meeting design performance requirements with that of selecting the proper plastic and manufacturing process to make a product at the lowest cost. This book has been prepared with an awareness that its usefulness will depend greatly upon its simplicity. The overall guiding premise has therefore been to provide all essential information. Each chapter is organized to best present a methodology for designing with plastics and composites, of industrial designers, whether in engineering This book will prove useful to all types or involved in products, molds, dies or equipment, and to people in new-product ventures, research and development, marketing, purchasing, and management who are involved with such different products as appliances, the building industry, autos, boats, electronics, furniture, medical, recreation, space vehicles, and others. In this handbook the basic essentials of the properties and processing behaviors of plastics are presented in a single source intended to be one the user will want to keep within easy reach.

Plastics Engineered Product Design
This book provides information on complexities, peculiarities, and limitations of various molding processes, and the comparative advantages and disadvantages of the possible plastic products manufacturing techniques, to permit an ideal match of good design and processing.

Handbook of Materials for Product Design

Comprehensive guide to plastics processing methods, equipment and materials

The Complete Part Design Handbook

A practical reference for all plastics engineers who are seeking to answer a question, solve a problem, reduce a cost, improve a design or fabrication process, or even venture into a new market. Applied Plastics Engineering Handbook covers both polymer basics – helpful to bring readers quickly up to speed if they are not familiar with a particular area of plastics processing – and recent developments – enabling practitioners to discover which options best fit their requirements. Each chapter is an authoritative source of practical advice for engineers, providing authoritative guidance from experts that will lead to cost savings and process improvements. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained along with techniques for testing, measuring, enhancing and analyzing them. Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don’t teach you in school, and experienced practitioners evaluating new technologies or getting up to speed on a new field. The depth and detail of the coverage of new developments enables engineers and managers to gain knowledge of, and evaluate, new technologies and materials in key growth areas such as biomaterials and nanotechnology. This highly practical handbook is set apart from other references in the field, being written by engineers for an audience of engineers and providing a wealth of real-world examples, best practice guidance and rules-of-thumb.

Plastics Extrusion Technology Handbook

Part of a series of core databooks within the William Andrew Plastics Design Library, Fatigue and Tribological Properties of Plastics and Elastomers provides a comprehensive collection of graphical multipoint data and tabular data covering fatigue and tribology. The concept of fatigue is very straightforward: if an object is subjected to a stress or deformation, and it is repeated, the object becomes weaker. This weakening of plastic material is called fatigue. Tribology is the science and technology of surfaces in contact with each other and therefore covers friction, lubrication and wear. The reduction of wear and fatigue and the improvement of lubrication are key bottom-line issues for engineers and scientists involved in the plastics industry and product design with plastics. Fatigue and Tribological Properties of Plastics and Elastomers, 2e, is an update of all that has changed in the world of plastics since the 1st edition appeared nearly 15 years ago, and has been reorganized from a polymer chemistry point of view. A hard-working reference tool: part of the daily workflow of engineers and scientists involved in the plastics industry and product design with plastics. The data in this book provide engineers with the tools they need to design for low failure rates.

Modern Plastics Handbook

- A comprehensive book which collates the experience of two well-known US plastic engineers.
- Enables engineers to make informed decisions.
- Includes a unique chronology of the world of plastics. The use of plastics is increasing year on year, and new uses are being found for plastics in many industries. Designers using plastics need to understand the nature and properties of the materials which they are using so that the products
perform to set standards. This book, written by two very experienced plastics engineers, provides copious information on the materials, fabrication processes, design considerations and plastics performance, thus allowing informed decisions to be made by engineers. It also includes a useful chronology of the world of plastics, a resource not found elsewhere.

Copyright code: 91028bd4f12fc87fbc58fa27719a7f03